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The linear stability of a slowly varying flow, the flow in a diverging straight- 
walled channel, is studied using a modification of the ‘WKB’ or ‘ray’ method. 
It is shown that ‘quasi-parallel’ theory, the usual method for handling such 
flows, gives the formally correct lowest-order growth rate; however, this growth 
rate can be substantially in error if its magnitude is comparable to that of the 
rate of change of the basic state. The method used clearly demonstrates the 
dependence of the growth rate, wavenumber, neutral curves, etc., on the cross- 
stream variable and on the flow quantity under consideration. When applied to 
the divergent channel, the method yields a much wider ‘unstable’ region and 
a much lower ‘critical ’ Reynolds number (depending on the flow quantity used) 
than those predicted by quasi-parallel theory. The determination of the down- 
stream development of waves of constant frequency shows that waves of all 
frequencies eventually decay. 

1. Introduction 
Studies of the linear stability of steady shear flows that are nearly parallel, 

such as boundary layers, jets and wakes, have traditionally relied on a quasi- 
parallel assumption. Since the basic flow is changing slowly, it is argued, the 
stability at  some point depends only on the local properties of the flow, i.e. the 
local profile, Reynolds number, etc. Without further justification, the mean flow 
is taken to be parallel and the usual analysis by normal modes follows (e.g. 
Schlichting 1968). 

Although this approach has had great qualitative success (cf. Schlichting), 
recent experbents (Ross et al. 1970; Mattingly & Criminale 1972; Scotti & 
Corcos 1972) have shown systematic differences from the quasi-parallel theory. 
Moreover, from a theoretical viewpoint, the quasi-parallel approach is obviously 
deficient in two respects. First, it can only determine whether a wave is growing 
or decaying at a particular point; it cannot determine the solution as a function 
of the downstream co-ordinate. Second, it cannot take into account, or even 

t Present address : Division of Maritime Science, The National Physical Laboratory, 
Teddington, Middlesek. 
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estimate, the effect of the variation of the basic state on the local growth. The 
method of approximation used here, which we shall refer to as the slowly varying 
approximation, but which is perhaps better known as the WKB, ray or multiple- 
scaling method, overcomes these deficiencies. It provides a rational method of 
approximation, in which the quasi-parallel theory will appear at lowest order. 

Let us be careful about our use of the terminology ‘parallel’ and ‘quasi- 
parallel’. By ‘parallel flow theory’ we refer to the familiar linear stability theory 
for flows that are uniform in a t  least one direction and, for the purposes of this 
discussion, steady in time. The linear ‘instability’ of these flows is readily 
understood since the growth rate (in time or space) is constant. ‘Quasi-parallel 
(or quasi-steady) theory’ is taken to be the treatment of slowly varying flows 
by assuming that the local growth rate can be determined by parallel flow theory; 
it recognizes that the growth rate will be a function of time and/or space. If an 
overall change of amplitude is required, it is calculated by integrating the local 
growth rate, as shown, for example, in equation (39) below. 

When the growth rate is not constant, the meaning of ‘instability’ is not so 
clear (Shen 1961). Waves can pass through regions of growth (‘unstable ’ regions) 
and regions of decay. In  some cases (as we shall see for the divergent channel), 
all waves eventually decay, even those which experience growth, so the flow 
appears to be stable on an absolute or overall basis. However, the mechanism 
responsible for the transfer of energy from the mean flow to a disturbance is 
still present. If disturbances are allowed to be completely random in space and 
time, then a t  any particular point (in space and time) some component of the 
resulting flow field will still be growing, even though each wave taken alone 
eventually decays. 

There is also the problem of what to use as a measure of amplitude. Shen 
argues that, since the basic state is changing, the growth or decay of a distur- 
bance should be measured relative to the basic flow. He suggests the use of a 
growth rate based on the ratio of disturbance kinetic energy to basic flow 
kinetic energy. M7e shall follow Shen’s suggestion, adapting his definition to  
space-dependent flows, and shall present results for both ‘relative ’ and ‘absolute’ 
measures of the amplitude. 

A further complication for unsteady or non-parallel flow is that the various 
disturbance flow quantities, the stream function, velocity components, energy 
density, etc., need not have the same growth rate. This rather surprising situation, 
in comparison with parallel flow theory, has recently been demonstrated very 
nicely by Bouthier (1973) using essentially the same method as we use here 
(see $4). We shall see that different flow quantities have different neutral curves. 

Finally, there is the question of nonlinear effects (Shen 1961; Rosenblat 1968). 
If a disturbance sustains a period of growth before decaying, its amplitude may 
become large enough for nonlinear effects to be important. The flow might be 
‘unstable’ on a practical basis. Of course, the linear theory presented here can- 
not predict such an occurrence, but the results of Eagles (1973) on nonlinear 
self-interaction of waves in a diverging channel may be relevant; this is 
discussed in 5 6. 

These points require further discussion than we can provide here. Our aim 
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will be merely to illustrate them by examining a specific example of unstable, 
steadily varying flow. 

The slowly varying approximation has been developed primarily for conser- 
vative systems which support neutral waves (e.g. Keller 1958; Lewis 1964; 
Bretherton 1966, 1968), but it appears to work just as well for flows that are 
unstable. More than ten years ago, Benney & Rosenblat (1964) suggested that 
the method be applied to stability problems, but this does not appear to have 
occurred until six years later, when Rosenblat & Herbert (1970) considered 
thermal convection in which the temperature of one boundary is slowly oscil- 
lating in time. (It is immaterial, as far as the method is concerned, whether the 
variation of the basic state is in time or space, or both.) Now Bouthier (1972, 
1973) has developed the method for steady, spatially dependent shear flows. 
In the first paper, he describes the method in general; in the second, he applies 
it to the stability of the boundary layer on a flat plate. Gaster (1974) has also 
applied the method (with some variations in the formalism) to the boundary 
layer. Other contributions to the general theory have been made by Nayfeh, 
Mook & Saric (1974) and Drazin (1974).1 

The method may be applied to flows whose rate of change in time or in the 
direction of wave propagation is small (but the overall change need not be small). 
The local properties of the wavelike disturbance are assumed to be slowly 
varying functions of time and/or space. For example, t p  lowest order the solution 
might be written as the real part of 

A@, T)f ( y ;  X ,  T )  exp [ W x ,  t) l ,  
where (x, t )  and ( X ,  T )  are the ‘fast’ and ‘slow’, streamwise and time co-ordinates 
and y is the transverse co-ordinate. The frequency Q ( X ,  T )  and the wavenumber 
K ( X ,  T )  are defined to be the derivatives of the ‘phase function’ e(x, t ) :  

Q =  -ae/at, K = aqax. 

They are related by a ‘local ’ dispersion relation which, for unstable or dissipative 
flows, yields complex values for Q and/or K .  Thus 8 is allowed to be complex, 
in contrast to the situation for neutral waves. The vertical structure f (y) is 
determined by a local eigenvalue problem, parametrically dependent on X and T .  
The ‘amplitude function’ A ( X ,  T )  is determined by the ‘amplitude equation’, 
which results at  higher order from a solvability condition imposed on the 
higher-order equations. These three functions 8, f and A are each complex in 
general, and thus all contribute to the total amplitude and total phase of the 
wave. 

For a basic state that is steady, the coefficients of the disturbance equation 
will be independent of time. Thus solutions having constant frequency are 
possible. We shall consider here waves of real frequency, waves that would be 

i- Unfortunately there are flaws in both of these studies. Nayfeh et al., in their expres- 
sions for the ‘corrected’ wavenumber and growth rate, do not include the downstream 
variation of the eigenfunction, that is, the terms containing f in our equations (27) and 
(38).  Drazin omits the ‘amplitude function’ (or any equivalent term) from his solution. 
Consequently his second-order solution [equation (19) of his paper] is in error and he 
cannot obtain higher-order corrections to the growth rate, etc. 
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generated by a wave maker in an experiment. The amplitude, wavenumber, 
vertical structure, etc., must be determined as functions of the (slowly varying) 
downstream variable. 

The particular basic state considered in this paper is the flow in divergent 
straight-walled channels as given by the Jeffery-Hamel profiles (cf. Fraenkel 
1962,1963). The quasi-parallel stability of this flow was studied by Eagles (1966). 
In  the next section, the basic flow is described and previous work summarized, 
and the governing equation for the disturbance is given. The application of the 
slowly varying approximation takes place in $3, and in the following section, 
after the meaning of ‘growth rate’ has been clarified, various results are pre- 
sented: ‘corrected ’ growth rates, neutral curves, etc. The numerical technique 
and checks performed on the solution are discussed in $ 5 ,  and then a summary 
and further discussion follow. 

We should also mention another method used in the study of nearly parallel 
flows. Lanchon & Eckhaus (1964) and Ling & Eeynolds (1973) construct a 
local expansion of the slowly varying coefficients about some point downstream; 
for example, if uo(x, y) is the basic flow, 

Their solutions also take the form of power series in x--xo (multiplied by an 
exponential factor) and are therefore only useful for 2 near xo. As in the quasi- 
parallel theory, this type of analysis cannot determine the complete solution as a 
function of the downstream variable, but it does take into account the variation 
of the basic flow in determining the local growth rate. As Bouthier (1972) 
points out (following a useful description of each of the three different approaches 
to the problem : quasi-parallel, local expansion and ‘slowly varying), this type 
of local solution is equivalent to a Taylor series expansion about xo of the solution 
obtained by the slowly varying approximation. 

2. The divergent channel 
The basic flow is the same as that considered by Eagles (1966, 1973, hereafter 

referred to as El,  E2): steady, two-dimensional, symmetric flow in a straight- 
walled divergent channel. For definiteness, we suppose that there is a wave 
maker at  some position along the channel and that upstream from the generator 
the walls curve smoothly and slowly until they are parallel, as in figure 1. The 
width of the channel a t  the generator is nearly 26 (see figure l), the divergence 
angle is ?a and the volumetric flow rate is taken to be 2M. Following E l  and E2, 
we use modified polar co-ordinates 

g, = a-1111 (ar), 7 = #/a, 
where r and q5 are the usual polar co-ordinates ( r  has been non-dimensionalized 
by 6). After non-dimensionalizing the time by b2/M and the stream function by 
M ,  the vorticity equation in these co-ordinates is 



Stability of slowly varying $ow 245 

, ? / = + I  

?/=--I 

FIGWE 1. The divergent channel. x , location of a wave maker. 
The length of the dashed arc at 5 = 0 is 2b. 

where R = M / v  is the Reynolds number and 

The boundary conditions are $ = -I: 1 and a$/ay = 0 at  7 = +_ 1.  
As in El  and E 2  we use the JefTery-Hamel solutions for flow in a wedge. 

The stream function $,, of the basic flow is steady and independent of 6,  and the 
‘velocity profile ’t g(7)  = a$o/a7 satisfies 

( 2 )  
where a prime indicates differentiation with respect to-7. We should like to 
study the ‘more unstable ’ profiles within this family: the ones that have inflexion 
points. In  the limit of small a, inflexional profiles are obtained if aR remains 
O( 1), that is, if R is large enough. In practice, if a = 0.1, R need only be approxi- 
mately 20.  Note that, as a+O with R fixed, the flow must approach plane 
Poiseuille flow, which we do not wish to consider in this paper. Therefore, we 
regard aR as fixed as a + 0 and obtain 

v2 = a 2 p p  + a21a72. 

g” + 4a2g’ + 2aRgg‘ = 0, 

s(7; R, a) = wfr ;  y )  + O(a2), (31 
where 
and 

y = aR 
wm + 2yww’ = 0, 

wdr = 2.  s’: with w( * 1)  = 0, 

These profiles have been described in E l  and E2; two which are used in this 
paper are shown in figure 2.  The family includes Poiseuille flow (y  = 0 ) ,  flows 
with inflexion points (y  > 1.80), and profiles with reversed flow near the walls 

The equation for a small two-dimensional disturbance is obtained by allowing 
(5.46 > > 4.71).  

$+$0(7)+$($77,t) 
and linearizing. This yields 

( 4 )  

t The artual velocity in the radial direction is u,, = r-la$o/a$ = e - U t g ( 7 ) ;  that is, it 
decays like l/r. 
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FIGURE 2. Velocity profiles w(7; y) .  --, y = 3.57; - -, y = 4.71 
The profile for y = 4.09 lies between these. 

with boundary conditions 

Consider (4) when a+ 0. Dropping the terms proportional to a and using (3), 
we have 

(The R-I term is formally O(a)  also, but it is retained a t  lowest order because it 
contains the higher-order derivatives. This is explained further below.) Equation 
(6) is typical of perturbation equations for which the basic flow is nearly parallel. 
The coefficients depend on both the transverse variable 7 and the streamwise 
variable 6, but the dependence on 6 is weak (for small a). The quasi-parallel 
theory would now ignore the variation of the coefficients with (, and normal- 
mode solutions could then be found, such as @ = f ( 7 )  exp [i(kE - w t ) ] ,  wheref(7) 
satisfies the Orr-Sommerfeld equation. 

This was the approach used in E 1. The transverse structure of the basic flow, 
the profile w(7; y) ,  was retained, but all other effects of the divergence, including 
the development of the wave downstream, were neglected. Using (6) with en[ 
set equal to unity, neutral curves were determined in the usual way, and the 
flows were found to be unstable for large enough Reynolds number. In  the next 
section, we reconsider (4) using the slowly varying approximation (and the 
same basic flow profiles). 

Before going on to the slowly varying analysis, let us consider the retention 
of the viscous term in (6) and in the equations to follow in the next section. Since 
R-l = O(a)  for the basic flows under consideration, this term is formally of 
higher order. However, i t  contains the highest-order derivatives and will in 
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fact be dominant somewhere in the flow field. Thus it is clear that if one wishes 
to use numerical techniques to solve for the vertical structure, as we do, this 
term must be retained in the lowest-order problem. [See Lanchon & Eckhaus 
( 1964) for an analysis using singular perturbation techniques.] A numerical 
approach is especially appropriate for these flows because the Reynolds number 
is not particularly large. 

This procedure can be formalized by considering an ‘extended’ or ‘false’ 
problem (cf. Ling & Reynolds 1973). The basic state requires a certain relation- 
ship between a and R, namely aR = y (y is some fixed number for the purposes of 
this argument) ; however in the equation governing the disturbance [equation (4)], 
they appear as independent parameters. The basic idea is to ignore the relation- 
ship between a and R as far as the disturbance is concerned and to solve (4) as 
if they were independent. Thus one obtains a more general solution than is 
required. The relationship dictated by the basic state is returned to in the final 
stages of the calculation when numerical values are required for a or R. The 
solution will be given, therefore, as an asymptotic expansion for small a and 
arbitrary R. As usual when using asymptotic methods, one trusts that the point 
of interest in parameter space, a = y/R,  is within the range of validity of the 
approximation.? 

3. The slowly varying approximation 
Equation (4), with boundary conditions ( 5 ) )  governs the disturbance. Since 

the coefficients are independent of time and slowly varying with (, we look for 
constant frequency solutions of the form 

t It might be thought that the singular nature of the perturbation for a + 0 with 
R = O(a-l) would automatically invalidate this ‘imbedding’ procedure. However, one 
can show for simple model problems that this is not the case. For example, consider 

where an approximate solution for $(x; e )  is to be found for 0 < e < 1. Using standard 
singular perturbation techniques, inner and outer expansions (which we shall not write 
out) can easily be found. The method used in the paper artificially separates the singular 
perturbation in ( A )  from the regular perturbation. Consider the ‘false ’ problem 

€q5”+(1+€) $’ = I ,  $ ( O )  = $ ( I )  = 0, ( A )  

h ? y + ( l + e )  $’ = 1, $ ( O )  = $(I) = 0 ( B )  

$ ( z ; h , € )  N $(1’(2;h)+s$‘2)(z;h)+ .... (C) 
for $(z; A ,  8). For 0 < e < 1 and h fixed, an asymptotic expansion is developed: 

We shall not write this out explicitly, but note that terms like exp ( - z/h) and exp( - l /h)  
appear. If (C) is nbw evaluated at our point of interest in parameter space, h = e,  we 
obtain 

( D )  
It can be shown that (D)  is a proper asymptotic solution to ( A )  in the sense that the 
difference between the exact solution and a partial sum of N terms is O(@) uniformly in 
z (at least for N < 3). If ( D )  is re-expanded in the two regions t fixed and 5 = O(e) ,  
the result is the same inner and outer expansions as were obtained by treating ( A )  directly. 
It could be argued that ( D )  is a more accurate representation of the exact solution because 
it retains the transcendentally small terms such as exp ( - I/€). 

$(.; 6, €) N $“)(z; € ) + E $ y z ;  €)+ .... 
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where C.C. refers to the complex conjugate of the preceding terms and X = a[ 
is the slow variable. The complex phase function O ( t ) ,  yet to be determined, 
describes the fast variation, but its derivative, the wavenumber, is assumed to 
be slowly varying. That is, 

K = ae/ac = K(x) ,  

and therefore s ( t )  = ~ ( a g  d t  = a-lo(~) ,  ( 8 )  

where 
J 

@ ( X )  = K ( X ) d X .  S" 
Note that K is the wavenumber in 6 space. In  r space the wavenumber would be 

K = dO/dr = (d( /dr)  (dO/dt) = e-x K ( X ) .  
Substituting the trial solution (7) into (4) yields the equation for Y: 

R-1(D2-K2)2Y +i(pezx-wK) (D2-K2)Y +iKw,,Y 
+ ~t[2 iKxR-~(D'  - 3K2) Y - 4iKR-1(D2 - K 2 )  (Y - Yx) 
+i/3e2X(iK,Y +2iKY,)+3wKKXY +2w(D2-K2)Y 
- w(D2- 3K2) Y, + 2w, DY + w,,Y,] = O(a2): (9) 

where w = w(7; y )  is the basic flow profile to O(ol). Subscripts and D = a/ay 
indicate differentiation. The boundary conditions are - 

Y = D Y = O  at 7 =  + 1 .  (10) 
We now treat R and y as constant and look for a solution as a+ 0, as explained 

in the previous section. Thus, we let 

w 7 ,  x;  R, y, a) = Yl(7, x;  397) + aY2(7, x;  R, y )  + . . . 
and obtain the following sequence of problems. 

At Wl),  

LY, [R-l(D2- K2)2 + i ( P I  - w K )  (0'- K2) + ~Kw,,] "1 = 0, (1 1 U) 
Yl = D Y ,  = 0 a t  7 = 1, (11b) 

where PI = Bezx  = P,(X) and K = K ( X ) .  This is the standard Orr-Sommerfeld 
problem except that where the frequency and wavenumber would appear we 
now have functions of the slow variable. (We shall callPI the 'intrinsic' frequency ; 
it  is the value that the frequency would take if the non-dimensionalization were 
carried out at the position X downstream.) Since X appears only parametrically, 
a solution of the form 

Yl(7J) = A ( X ) f ( Y ; P I ( x ) , K ( X ) )  (12) 

may be found, wheref(7; PI ,  K )  is a solution of (11) for fixed X and is normalized 
in some specified (and arbitrary) manner. Figure 3 shows the results of two 
calculations off for two values of PI. For all our calculations the normalization 
chosen wasf(0) = 1 for all X values. Therefore A ( X ) ,  the (complex) amplitude 
function, which is yet to be determined, may be interpreted as the amplitude of 
the stream function on the centre-line of the channel. It is not the 'total ' ampli- 
tude (see 34), and it is not s measure of amplitude for other flow quantities. 
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Channel wall 
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" 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

f 
FIGURE 3. Real and imaginary parts of the eigenfunction f = fr+ifi for y = 4.09 and 
R = 45. -, /3I = 0.445; --, = 2.205. These values of 181 correspond t o  points A 
and B in figures 4 and 5 (b ) .  

Of course, in order to obtain such a solution to this eigenvalue problem, a 
certain characteristic relation must hold; for example, 

K = P(PI, R, 7). 

K ( X )  = P(P@, R7 y) ,  

Thus, K as a function of X is given by 

(13)  

and 8(c) itself may be determined from (8). For P, R and y real, K ( X )  [and 
therefore S(c)]  will be complex in general. It is understood that we are consider- 
ing the 'most unstable' mode, the one with the most negative value of the 
imaginary part of K for each value o fp  and X .  

LY, = L,aY,/aX + K ,  L2Y, + L3Y,, (14a) 

Y, = D Y ,  = 0 at 7 = 5 I ,  (14b) 

At WE), 

where L is the Orr-Sommerfeld operator defined in ( I  1 a )  and L,, L, and L, are 
also differential operators with respect to 7: 

L, - 4iKR-'(D'- K 2 )  + ZKP, + w(D2 - 3K2) - w.,,.,,, 
L, E - 2iRp1(D2- 3K2)  + P I -  ~ w K ,  } (15) 

L3 4iKR-l(D2 - K 2 )  - Zw(D2- K2)  - BLU.,, D. 

The first two inhomogeneous terms of (14a) are seen to arise from the particular 
form of the solution (7); however, the third comes directly from the terms pro- 
portional to a in (4) .  
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We note in passing that the operators L, L, and L, are related in a special way. 
If we consider L to be a function, L = L(D,  K ,  PI)  R, y, y), we can evaluate the 
derivatives of L with respect to these parameters. One may easily verify that 

L, = i a q a h - ,  L, = iiaZLIaK2. (1% (17) 

This can be shown to be a general result, valid for arbitrary differential equations 
such as (4). 

Let us rewrite problem (14) using (12): 

Y, = D Y 2  = 0 at y = 2 1.  

(fis now taken to be a function of 7 and X, i.e.f = f (7 ,  X).) This inhomogeneous 
system can have a solution only if a certain solvability condit,ion is satisfied. 
Let 5 be the operator adjoint to L, 

5 = R-l(D2 - G ) 2 +  i(pI - W K )  ( 0 2 -  K 2 )  - 2iKw’D, 

and f be a solution to 

1 Zf= 0) 

f = D f = O  at y =  51. 

Then, provided that Y, satisfies the boundary conditions, it can be shown that 

1 f L Y , d y  = 0, 
t l  

-1  
which implies t,hat 

C1(X)  dA/dX + C,(X) A $- C@) A + C&X) A = 0, 

J -1 
P l l  

Y -  

Equation (20) is the required amplitude equation. It may be written as 

d A / d X + H ( X ) A ( X )  = 0 (22) 

and easily integrated provided that C,(X) does not vanish (which is the case in 
our examples). 

The solution then takes the form 

Y = A ( X ) f ( y , X ) e x p ( i ( B ( & - P t ) ) + ~ . c .  
+ a[Y2(v, X) exp {i(O(() - p t ) )  + c.c.] + @aZ)), (23) 

in which the components of the lowest-order solution are known. The next- 
order correction, Y2, could be calculated from (18). (Y, would contain a homo- 
geneous solution of the form A 2 ( X ) f ( 7 ,  1); A,(O) can be specified by requiring 
that Y, be orthogonal to the lowest-order solution at  X = 0 (cf. Ling & Reynolds 
1973)) but A 2 ( X )  for X > 0 can only be determined by going to the next order 
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in the calculation, where another amplitude equation would arise.) However, 
to obtain the O(a)  correction to the growth rate, it is not necessary to calculate 
the O(a)  correction to the vertical structure. This is demonstrated in the next 
section. 

4. The growth rates, neutral curves and downstream development 

or ‘physical’ amplitude, is, in terms of the stream function, 
The wave ampIitude that would be observed in an experiment, i.e. the ‘total’ 

(24) amp$ = 21Yexp[i(O-Pt)]I = 21Ylexp(-Oi), 

where Oi is the imaginary part of 0. We define a growth rate based on $ in 5 
space as 

(The growth rate in r space would be 
G&$) = (amp $)-l a(amP $)/a<. 

a,($) = (amp $)-la(amP $)/a? 
and thus differs by a positive factor since a/& = e-Xa/af; . )  Using (24), ( 2 5 )  
becomes 

a&$) = - K i + ~ l ~ l s / l ~ l ,  (26) 

where Ki = dO,/d[ is the imaginary part of the wavenumber. The expansion 
for Y, 

may be substituted, yielding 
Y(?I,X) = A(X) f (? I ,X )+aY , ( r ,X )+ . . . ,  

= -K,+a(IAIx/I4 +Iflx/lfl) (27) 
to O(a).  

We see that formally the growth rate is the same to lowest order as that given 
by the quasi-parallel theory: - K,(X). However, in the unstable region, according 
to that theory, the magnitude of Ki is small and is likely to be comparable to 
the value of a. Furthermore when Ki is equal to zero, i.e. at the neutral points 
determined by quasi-parallel theory, there is still growth or decay due to the 
higher-order effects. Thus, the higher-order corrections are essential in deter- 
mining the growth through the unstable region and in determining the correct 
neutral points, the values of X where the growth rate is truly zero. 

Before drawing ‘corrected’ neutral curves, we must be quite careful about 
the growth rate as defined in (25 ) .  The O(a)  corrections exhibit two new, and 
perhaps surprising, features. First, the growth rate varies across the channel 
owing to the dependence off upon X .  And second, the growth rate is different 
for different flow quantities. Consider the velocity components, given in polar 
co-ordinates by 
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The physical amplitudes of these quantities are 
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and therefore 

to O(a) .  These growth rates can differ considerably from the growth rate of the 
stream function. In  fact, in one example we found that G,(u) evaluated a t  
3 = & 0.5 remained negative at  all X, even in the region where - Ki was positive. 

Thus the question arises as to what the 'proper' measure is for the growth of 
the wave. Of course ( 2 3 )  may be regarded simply as the description of the 
perturbation flow field, and any particular aspect of the flow may be derived 
from it. If one has experimental data to compare with the calculation, one 
obviously must use the same quantity as that which was observed. Unfortu- 
nately, we do not know of any suitable observations of flow in a divergent channel, 
and so, in order to compare with the quasi-parallel theory, we need a general 
measure of the strength of the disturbance as it develops downstream. We 
decided to use a mean kinetic energy density, averaged over time and integrated 
across the channel, defined as follows: 

where an overbar indicates an average over a period. Following Shen (1961) we 
also defined a 'relative' energy density 

where E, is the kinetic energy density of the basic flow: 

where 

to O(a). Using (28 )  and changing the co-ordinates, ( 3 1 )  and ( 3 2 )  yield 

(33 )  

(34) 
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FIGURE 4. Growth rates as a function of X for y = 4.09, R = 45 and /3 = 0.2. - -, quasi- 
parallel growth rate - K, .  The eigenfunctions at points A and B are shown in figure 3. 

For growth rates based on these quantities, we must include a factor of a half 
in the definition to enable comparison with the other growth rates; that is, 

where 

Figure 4 shows a typical calculation of various growth rates to O(a)  as functions 
of X . t  Displayed are the growth rates for E,  @ and @ (evaluated at 7 = 0). We 
see that in the ‘worst ’ case, that for l?, the maximum growth rate is more than 
three times that given by quasi-parallel theory. The dependence of the growth 
rates is actually upon the intrinsic frequency PI = PeZX,  so the same curves can 
be applied to waves of other frequencies by a suitable shift of origin. 

From a serles of calculations such as this for other values of R, the neutral 
points (i.e. the values of X where the growth rates are zero) are easily determined 
as a function of the Reynolds number. This leads to the sets of neutral curves 
given in figure 5. Three different values of y, corresponding to three different 

t It is at this stage, when a specific value of a is required, that the relationship UR = 
is used (see the discussion at the end of 52). In  practice y and R were chosen first, and 
then a = y /R  was determined. As seen in figure 6, a varied from about 0.05 to 0.4. 
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FIGURE 5 .  Neutral curves for three different profiles. --, neutral curves according to 
quasi-parallel theory, Inside the curves there is growth; outside, decay. (a)  y = 3.57. 
( b )  y = 4.09. (c) y = 4.71. 

flow profiles (see figure 2),  have been used. The dashed curves are the neutral 
curves that would be determined by quasi-parallel theory. The other curves 
indicate the regions of growth for the various quantities. Note that the ordinate 
is PI = ,h’eZx. For fixed /3, the evolution of a wave as it travels downstream is 
given along a line of constant R. The waves which pass through a region of 
growth ultimately decay. On the other hand, for a given value of X, figure 5 
indicates which frequencies correspond to positive growth (of some flow qua.ntity). 
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0.1 0.2 0.3 0.4 
0 

a 

FIGURE 6. The ‘critical’ Reynolds number based on the relative energy E .  --, quasi- 
parallel theory (part of this curve is from El). 

A 

AS long as the Reynolds number is larger than some ‘critical’ value (which 
depends upon the flow quantity), there is a band of growing waves for any value 
of X .  However, this might not indicate instability. Low frequency waves 
will pass through a long period of decay before reaching their region of growth 
at  large X values; the growth in the ‘unstable’ region cannot make up for the 
decay. This is demonstrated below in figure 9. 

For each value of y, a critical Reynolds number can be defined for each flow 
quantity, indicating when that particular flow quantity will be able to grow. 
Although it does not indicate whether the flow is stable or unstable, we have 
plotted in figure 6 the critical Reynolds number for the selative disturbance 
energy 2 in order to compare it with the one determined by quasi-parallel theory. 
For fixed a, the decrease in the critical Reynolds number is roughly 17 yo. 

In  addition ti0 changes in the growth rate at  higher order, the solution (7 )  
exhibits higher-order corrections to the wavenumber. Let us write (7)  as 

* 

where 

is the total phase of II. (0, is the real part of 0 and argY is the argument of Y). 
Using the expansion for Y, we have 

argY = argA+argf+O(a). 

The observed, or ‘physical’, wavenumber is then the derivative of the total 
phase; in .$ space, in terms of $, it is 

$i$) a (ph $ ) / a t  = Kr + a[(arg A ) ,  + (argf)xI + O(a2) ,  (38) 

where K, is the real part of K .  
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y = 4.09, R = 45 and @ = 0.2. - -, quasi-parallel theory. 
FIGURE 7. Physical wavenumbers based on (7 = 0 )  as functions of X for 

The physical wavenumber also depends upon 7 and the flow quantity under 
consideration. For example, for the velocity components [see (28)], 

= K, + cc.[(argA)x + (argf,)xl+ O(a2), 
q v )  = K + a[(argA)x f (argflx + K M f  O(a2) .  

However, in contrast to the situation for the growth rates, the lowest-order 
term, i.e. the wavenumber as usually determined from quasi-parallel theory, is 
much larger than cx and is truly dominant. This is illustrated in figure 7, where 
the quasi-parallel wavenumbers K, and K~ and the total wavenumbers Ng($) 
and A$(@) (evaluated at  7 = 0) are shown to be nearly equal. We note that the 
wavenumber that would actually be measured in r space, 

does not change very much as the wave progresses downstream, as can also be 
seen in figure 8. 

Figures 8 and 9 show the typical downstream development of waves. In 
figure 8, a wave $5 it would appear a t  some instant of time is displayed in terms 
of the vertical velocity measured on the centre-line of the channel. For this 
choice of frequency, the wave decays initially (Le. at X = 0, r = yo = l/cx), grows 
through the 'unstable' region and ultimately decays. For comparison, also plotted 
is the amplitude of the relative velocity, v^ = v/uo, and the (absolute) amplitude 
that would be determined using quasi-parallel theory : 

N,($) = a (Ph @)/ar = q$), 

(ampv)Qp = voexp ( -- s," Ki d x ]  > (39) 
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r - r ,  

FIGURE 8. The appearance of the wave in physical space (i.e. r space) in t e r n  of the 
vertical velocity on the centre-line of the channel for y = 4.09, R = 45 and ,8 = 0.2. 
- -, amplitude that would be determined by quasi-parallel theory, see (39). 

0.99 

X 

FIGURE 9. The amplitude in terms of the absolute energy density as a function 
of X for various frequencies; y = 4.09 and R = 46. 

where q, = constant = 1 in figure 8. In  figure 9 the amplitude in terms of the 
absolute energy density is shown for waves of different frequencies. Because of 
the dependence of the growth rates upon the intrinsic frequency, rather than on 
p or X separatdy, it can be shown that any of these curves can be obtained from 
any other ope by a suitable shift of the origin and rescaling. 

5. Numerical methods and checks 
The first computational problem was to solve for the complex eigenvalue 

K ( X )  for given real values of p ,  R, y and X in the Orr-Sommerfeld problem 
(11). Minor changes in some well-tested computer programs (E2) enabled us to 
do this and to compute the eigenfunction f and the adjoint eigenfunction f. 

17 F L M  69 
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It is well known that severe computational difficulties arise if IKX1 is large, but 
here we restricted ourselves to cases where lKX( < 300 and had no difficulty 
in obtaining solutions correct to about four significant figures in f .  

We increased X by small steps of length h and stored the results for K ( X ) ,  f 
andf. We then obtained K,, f x ,  etc., by numerical differentiation using central 
difference formulae with truncation error O(h4).  We were then able to evaluate 
the integrals required for H(X) and to calculate A ( X )  by integrating (22). 

The integration of the differential equations was done by a fourth-order 
Runge-Kutta process, and Simpson's rule was used for all integrations. By 
using the symmetry of the disturbance stream function, we were able to cal- 
culate all the results over the range (0, l) in 7. We used both 40 and 20 steps in 
11 over this range, and experimented with various sizes of the X-steps. Most of 
the calculations were done with 20 7-steps and with an S-step length of 0.04. 
We estimated that our results for h'(9) and H ( X )  were correct to better than 
three significant figures in general. 

We now list various checks made on the calculations. 
(i) Tests on K ( X ) ,  f (7, X )  andf(7, X) were the same as those described in E2. 
(ii) The numerical results for the profiles w(7; y )  were checked against earlier 

results of Fraenkel (1963). 
(iii) The coefficients Cj(X) in (20) were calculated from expressions different 

from those given in (21). I f  we consider the operator L,  which is displayed in 
( 1  1 a) ,  to be a function of K ( X )  and P I ( X )  then by taking the total derivative 
with respect to X of the equation Lf = 0 we find that f x  satisfies the equation 

with the same boundary conditions as for f .  On using the solvability condition 

and then from (41), (21) and (16) that 

Using the expression for L from ( 11 a ) ,  we have 

so that the second integral in (42) is entirely different in form from the first. 
This provided a useful check on the numerics. Another, more complicated 
identity involving C,, C, and C, can be obtained by taking the second derivative 
with respect to X of L f = 0, and this was used to provide a further check on the 
original calculations. 

(iv) If we know K ( X ) ,  f (7, X )  and f (7 ,  X) then (41) determines K x ( X ) .  This 
was used as a check on our numerical differentiation of h ' (X) .  We then solved 
(40) to provide a check onf,. 
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6. Summary 
We have obtained approximate solutions for waves of constant, real frequency 

as they travel down a slowly diverging channel. The solutions take into account 
the downstream development of the basic flow and of the waves; they are quite 
different, both quantitatively and qualitatively, from those obtained for parallel 
flows. We may summarize the differences as follows. 

(i) The growth rate (spatial) is a function of the downstream co-ordinate. 
Thus, waves may pass through regions of growth and regions of decay. For the 
divergent channel, we have found that waves of all frequencies, even those which 
pass through an ‘unstable’ region, eventually decay as they travel far downstream 
from the wave maker. This result could have been obtained by use of the usual 
quasi-parallel theory, but the higher-order corrections that we have calculated 
here show that, in general, the unstable region is considerably widened and the 
critical Reynolds number is correspondingly reduced. (This may be a general 
feature of flows that are decelerating; cf. Shen 1961). 

(ii) The growth rate is a function of the cross-stream variable. This occurs 
because the vertical structure of the disturbance, the eigenfunction, evolves as 
the wave travels downstream. This behaviour suggests the use of a quantity 
that is integrated across the channel, such as the kinetic energy density [(31) 
or (32)], as a general measure of the growth of the disturbance. 

(iii) The growth rate is a function of the flow quantity involved, i.e. the stream 
function, velocity components, kinetic energy, etc. This is perhaps the most 
striking feature of these solutions as compared with parallel flow theory. The 
stream function, for example, may be growing at  some point in the channel 
while the velocity components are decaying. This leads to different neutral 
curves and different critical Reynolds numbers for different flow quantities. 

(iv) The waveIength is also a function of the distance downstream, the cross- 
stream variable and the flow quantity. However, we have found for the divergent 
channel that, in contrast to the results for the growth rate, the lauer two effects 
are not very important. The lowest-order term (the wavelength as determined 
by quasi-parallel theory) is truly dominant. 

(v) A distinction must be made between flow quantities measured relative 
to the basic state and those measured absolutely. Since the basic state is evolving 
as the wave is growing, a relative measure may be more important for determining 
nonlinear effects. 

The slowly varying approximation that we have used is a formal perturbation 
scheme in which the quasi-parallel theory emerges a t  lowest order. Thus quasi- 
parallel theory; is formally justified as giving a first approximation. However, in 
practical terms, we have seen that the quasi-parallel predictions for the growth 
and downstream development of the amplitude can be seriously in error. AS 
(27), (30) and (36) show, the quasi-parallel growth rate - K,  is a good approxi- 
mation to the total growth rate only if it  is much larger (in numerical magnitude) 
than the rate of variation of the basic flow (a, in our case). If the characteristic 
scale of the instability (according to quasi-parallel theory) is comparable to the 
slow scale of the basic state, the quasi-parallel theory should not be used for the 

17-2 
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growth rates or amplitude development. (The ratio a/lKil may be a useful 
parameter; if it is very small, the effect of the variation of the basic state on the 
growth rate can be safely ignored.) 

The shifts in the neutral curves, figure 5, are quite large, larger than might be 
expected in a higher-order theory. Again, this is due to the smallness of the 
lowest-order term for the growth rate, and it does not indicate a failure in the 
method [the O(a) terms remain O(a) in numerical magnitude]. Of course, further 
corrections may shift the neutral curves once more, but these shifts are expected 
to be small [O(a)].  

We have found that waves of all frequencies eventually decay as they travel 
downstream. However, in the unstable region, waves may become large enough 
for nonlinear effects to be important. Our linear results show that unless the 
flow is substantially supercritical, a wave will simply not grow very much before 
it starts to decay. In  figure 8, at a Reynolds number 12.5% above the quasi- 
parallel critical value, the overall growth through the unstable region is only 
30 % in terms of the absolute vertical velocity and 250 % in terms of the relative 
vertical velocity. In  terms of the kinetic energy density, the overall growth is 
about 60% for the absolute quantity (see figure 9) and about 250% for the 
relative quantity (not illustrated). 

Even if the amplitude becomes large enough for nonlinear effects to be im- 
portant, the results of Eagles (1973) indicate that the nonlinearity will be 
stabilizing. His calculations are for parallel flow having the profiles considered 
here, but the same qualitative behaviour is expected in the slowly varying 
situation. Thus even waves of finite (but small) amplitude may be expected to 
pass through a region of growth but then to decay. 

We may compare our results with those of Bouthier (1973) for the laminar 
boundary layer on a flat plate, in which the quasi-&wallel growth rate is also 
small. Using essentially the same method of analysis, he also obtains substantial 
destabilizing shifts in the neutral curve (35 yo in the critical Reynolds number, 
85 yo in the critical frequency), shifts which bring linear stability theory in line 
with experimental evidence. (Unfortunately, Bouthier is‘ not precise about 
whether the flow quantity used to define the corrected neutral curve was the 
same as that observed in the experiments; cf. Gaster 1974.) Our results for the 
physical or total wavelength also compare favourably : the correction due to 
the variation of the basic flow increases the wavelength by only 1 or 2 yo over 
that given by quasi-parallel theory. 

The steady-state, purely oscillatory waves that we have obtained are those 
that one would expect to find downstream of a generator in an experiment. 
Unfortunately, we know of no experimental data with which to compare our 
results, and we do not know theoretically whether these steady-state solutions 
would actually exist. For this, one should solve an initial-value problem in which 
the wave maker is ‘turned on’ at  some instant of time, as Briggs (1964) and 
Gaster (1965) have done for parallel flows. They found that, if the real part of 
the group velocity is positive for the unstable modes, then a transient distur- 
bance will propagate downstream, leaving a steady-state wave behind. Even 
though the meaning of group velocity is not entirely clear for unstable, slowly 
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varying flows,? it is reasonable that the same criteria would hold. For the 
solutions that we have investigated the real part of the group velocity is positive 
for all frequencies so we expect that a steady-state wave will be established. 

Another aspect of the problem requiring further study is the possibility of 
reflexions. In  ordinary WKB theory (e.g. Heading 1962), the existence of 
transition points implies that a reflected wave is necessary to complete the 
approximation to the exact solution. If the transition point is on the real axis, 
there is total reflexion; the reflected wave has an O(1) amplitude. If the transi- 
tion point is off the real axis, there is partial or weak reflexion; the amplitude 
of the reflected wave is typically O(e-I/.), where a is the small parameter and I 
is proportional to the distance from the real axis (cf. Heading 1962, chap. 4). 
In  our formalism, which essentially follows that of ray theory, transition points 
occur at singularities of (20) : at the points where C, vanishes (real and imaginary 
parts). In  our examples, C, does not vanish on the real axis, but it might vanish 
somewhere in the complex plane. However, since A ( X )  does not become unduly 
large on the real axis, the transition points, if there are any, do not lie very close 
to the axis. Hence, 1 is expected to be O(l) ,  and the amplitude of any reflected 
wave would be very small. 

The bulk of this work was completed while one of the authors (P.M.E.) was 
visiting Imperial College. We are indebted to Professor J. T. Stuart for many 
helpful discussions and to the Science Research Councii for financial support. 
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